APPENDIX A

Acronyms, Abbreviations, Symbols, and Notation

Appendix A

Acronyms, Abbreviations, Symbols, and Notation

A.1.0 Acronyms And Abbreviations

AA Atomic absorption

ASCII American Standard Code for Information Interchange

ASTM American Society for Testing and Materials CCM Constant capacitance (adsorption) model

CDTA Trans-1,2-diaminocyclohexane tetra-acetic acid

CEAM Center for Exposure Assessment Modeling at EPA's Environmental Research

Laboratory in Athens, Georgia

CEC Cation exchange capacity

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

DLM Diffuse (double) layer (adsorption) model DDLM Diffuse double layer (adsorption) model

DOE U.S. Department of Energy

DTPA Diethylenetriaminepentacetic acid EDTA Ethylenediaminetriacetic acid EDX Energy dispersive x-ray analysis

EPA U.S. Environmental Protection Agency

EPRI Electric Power Research Institute

HEDTA N-(2-hydroxyethyl) ethylenedinitrilotriacetic acid

HLW High level radioactive waste

IAEA International Atomic Energy Agency

ICP Inductively coupled plasma

ICP/MS Inductively coupled plasma/mass spectroscopy

IEP (or iep) Isoelectric point

LLNL Lawrence Livermore National Laboratory, U.S. DOE

LLW Low level radioactive waste MCL Maximum Contaminant Level

MEPAS Multimedia Environmental Pollutant Assessment System

MS-DOS® Microsoft® disk operating system (Microsoft and MS-DOS are register

trademarks of Microsoft Corporation.)

NPL Superfund National Priorities List NRC U.S. Nuclear Regulatory Commission NWWA National Water Well Association

OERR Office of Remedial and Emergency Response, U.S. EPA

ORIA Office of Radiation and Indoor Air, U.S. EPA

OSWER Office of Solid Waste and Emergency Response, U.S. EPA

PC Personal computers operating under the MS-DOS® and Microsoft® Windows

operating systems (Microsoft® Windows is a trademark of Microsoft

Corporation.)

PNL Pacific Northwest Laboratory. In 1995, DOE formally changed the name of the

Pacific Northwest Laboratory to the Pacific Northwest National Laboratory.

PNNL Pacific Northwest National Laboratory, U.S. DOE

PZC Point of zero charge

RCRA Resource Conservation and Recovery Act

SCM Surface complexation model

SDMP NRC's Site Decommissioning Management Plan

TDS Total dissolved solids

TLM Triple-layer adsorption model

UK United Kingdom (UK)

UK DoE United Kingdom Department of the Environment

UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation

A.2.0 List of Symbols for the Elements and Corresponding Names

Symbol	Element	Symbol	Element	Symbol	Element
Ac	Actinium	Gd	Gadolinium	Po	Polonium
Ag	Silver	Ge	Germanium	Pr	Praseodymium
Al	Aluminum	Н	Hydrogen	Pt	Platinum
Am	Americium	Не	Helium	Pu	Plutonium
Ar	Argon	Hf	Hafnium	Ra	Radium
As	Arsenic	Hg	Mercury	Rb	Rubidium
At	Astatine	Но	Holmium	Re	Rhenium
Au	Gold	I	Iodine	Rh	Rhodium
В	Boron	In	Indium	Rn	Radon
Ba	Barium	Ir	Iridium	Ru	Ruthenium
Be	Beryllium	K	Potassium	S	Sulfur
Bi	Bismuth	Kr	Krypton	Sb	Antimony
Bk	Berkelium	La	Lanthanum	Sc	Scandium
Br	Bromine	Li	Lithium	Se	Selenium
С	Carbon	Lu	Lutetium	Si	Silicon
Ca	Calcium	Lw	Lawrencium	Sm	Samarium
Cb	Columbium	Md	Mendelevium	Sn	Tin
Cd	Cadmium	Mg	Magnesium	Sr	Strontium
Ce	Cerium	Mn	Manganese	Ta	Tantalum
Cf	Californium	Mo	Molybdenum	Tb	Terbium
Cl	Chlorine	N	Nitrogen	Tc	Technetium
Cm	Curium	Na	Sodium	Te	Tellurium
Co	Cobalt	Nb	Niobium	Th	Thorium
Cr	Chromium	Nd	Neodymium	Ti	Titanium
Cs	Cesium	Ne	Neon	Tl	Thallium
Cu	Copper	Ni	Nickel	Tm	Thulium
Dy	Dysprosium	No	Nobelium	U	Uranium
Er	Erbium	Np	Neptunium	V	Vanadium
Es	Einsteinium	0	Oxygen	W	Tungsten
Eu	Europium	Os	Osmium	W	Wolfram
F	Fluorine	P	Phosphorus	Xe	Xenon
Fe	Iron	Pa	Protactinium	Y	Yttrium
Fm	Fermium	Pb	Lead	Yb	Ytterbium
Fr	Francium	Pd	Palladium	Zn	Zinc
Ga	Gallium	Pm	Promethium	Zr	Zirconium

A.3.0 List of Symbols and Notation

	Dispossivity in the v. v. or z direction		
α	Dispersivity in the x, y, or z direction Capacity factor or ratio of the moles per unit volume of water-saturated solid,		
α'	<u> </u>		
	C _s , to the moles per unit volume of liquid, C _l		
γ	Activity coefficient		
δ	Constrictivity of the porous media		
δ'	Mass-related constant		
€	Parameter in Dubinin-Radushkevich isotherm model equal to "RT $\ln (1 + 1/C_i)$ "		
λ	First-order degradation/decay coefficient		
θ	Volumetric water content		
$\theta_{ m m}$	Volume fraction of water associated with the mobile domain		
$\Theta_{ m v}$	Total water content		
$ heta_{ m vz}$	Moisture content in the vadose zone		
μ	Mobility		
$ ho_{b}$	Bulk density		
$ ho_{particle}$	Particle density		
σ	Net charge associated with the surface of adsorbing mineral as conceptualized in		
	electrostatic adsorption models		
$\sigma_{ m d}$	Charge associated with the diffuse layer d of counterions as conceptualized in		
	electrostatic adsorption models		
$\sigma_{_{eta}}$	Charge associated with the β layer as conceptualized in electrostatic adsorption		
	models		
$\sigma_{ m o}$	Charge associated with the o layer as conceptualized in electrostatic adsorption		
	models		
$\sigma_{\rm s}$	Surface charge at the Stern layer		
$\sigma_{ m sd}$	Standard deviation associated with the Gaussian solution		
τ	Tortuosity of the porous media		
v_{x}	Pore velocity in direction x		
ф	Porosity		
Φ_{ϵ}	Effective porosity		
ϕ_{m}	Mobile water fraction as defined by the ratio of the volume fraction of water		
- 	associated with the mobile domain, $\theta_{\rm m}$, to the total water content, $\theta_{\rm v}$		
ψ	Electrical potential		
$\Psi_{ m d}$	Potential at the diffuse layer		
$\psi_{\rm o}$	Potential at the surface (plane <i>o</i>)		
$\Psi_{\rm s}$	Potential at the Stern layer		
A	Concentration of free or unoccupied surface absorption site on a solid phase		
ads	Adsorption		
A_{i}	Concentration of adsorbate (or species) I on the solid phase at equilibrium		
$A_{\rm m}$	Adsorption capacity of adsorbent per unit mass		
am	Amorphous		

Aqueous aq

C Radioactivity of tracer on sediment

 \boldsymbol{C} Constant capacitance term CEC Cation exchange capacity

 C_{i} Concentration of adsorbate (or species) I in solution at equilibrium

 C_{l} Moles per unit volume of liquid C_{om} Concentration of organic material

 C_{s} Moles per unit volume of water-saturated solid C_{T} Total mass at the site per total site volume C_{Tp} Total mass at the site per dry weight of soil Proportionality constant or diffusion coefficient D

Dispersion coefficient in the x, y, and z directions adjusted for retardation with the D^*

retardation factor

Apparent diffusion coefficient D_{a} Effective diffusion coefficient D_{e} D_{i} Intrinsic diffusion coefficient

 $D_{\text{mech}} \\$ Mechanical dispersion

Molecular diffusion coefficient D_{mol}

Diffusion coefficient for a species within a porous media D_{n}

Dispersion coefficient in direction x D_{v}

Free electron e⁻ e^{-ψF/RT} Boltzmann factor

Redox potential of an aqueous system relative to the standard hydrogen electrode Eh

F Faraday constant, 23,060.9 cal/V·mol f_{oc} Fraction (w/w) of organic material in soil $_{\Delta}G_{\rm f.298}^{\circ}$ Gibbs free energy of formation at 298 K

 $\Delta G_{\mathrm{f.T}}^{\circ}$ Gibbs free energy of formation at temperature T

Gibbs free energy of reaction at 298 K $\Delta G_{r,298}^{\circ}$

 ${_{\Delta}}G_{r,T}^{\circ}$ Gibbs free energy of reaction at temperature T

 ^{3}H Tritium

Thickness of the vadose zone H_1 Mixing-zone thickness

 h_{m}

ΔH°_{f.298} Enthalpy (or heat) of formation at 298 K

Enthalpy (or heat) of formation at temperature T $\Delta H_{\rm f.T}^{\circ}$

Enthalpy (or heat) of reaction at 298 K $\Delta H_{r,298}^{\circ}$

Enthalpy (or heat) of reaction at temperature T $\Delta H_{r,T}^{\circ}$

Ionic strength **IAP** Ion activity product

Flux of species I in direction x \mathbf{J}_{ix}

A constant in the Langmuir, Freundlich and Dubinin-Radushkevich isotherm K

models

 K_{DR} Concentration-based, conditional equilibrium constant calculated from Dubinin-

Radushkevich adsorption isotherm

K_d Concentration-based partition (or distribution) coefficient

 $\begin{array}{ll} K_d^{act} & Activity\mbox{-based partition coefficient} \\ K_{dis} & Dissolution equilibrium constant} \\ K_{ex} & Exchange reaction constant \end{array}$

K_F Concentration-based, conditional equilibrium constant calculated from Freundlich

adsorption isotherm

K_E^{act} Activity-based, conditional equilibrium constant calculated from Freundlich

adsorption isotherm

K_I Concentration-based, conditional equilibrium constant calculated from Langmuir

adsorption isotherm

K_I^{act} Activity-based, conditional equilibrium constant calculated from Langmuir

adsorption isotherm

 K_{oc} Organic-carbon partition coefficient K_{om} Organic-matter partition coefficient $K_{r,298}$ Equilibrium constant at 298 K

K_{r.T} Equilibrium constant at temperature T

K_{sp.T} Solubility product

l Liter

M Generic term for metal or radionuclide constituent

m Meter

M_Δ Instantaneous mass released per unit area

 M_{ads} Mass of constituent I associated with the adsorbed phase in the vadose zone Mass of constituent I associated with the aqueous phase in the vadose zone

M_{rel} Released mass

 $M_{\mbox{\tiny saturated}}$ Total mass of constituent I associated with the saturated zone

M_{sed} Sediment mass

M_{Total} Total combined mass of constituent I in the vadose and saturated zones

M_{vadose} Total mass of constituent I associated with the vadose zone

ml Milliliter mol Mole mV Millivolt

N Constant in the Freundlich isotherm model

n Total porosity
n_e Effective porosity

pE Negative common logarithm of the free-electron activity

pH Negative logarithm of the hydrogen ion activity

pH_{zpc} pH for zero point of charge

R Ideal gas constant, 1.9872 cal/mol·K

R_f Retardation factor s Solid phase species

SI Saturation index, as defined by $\log (IAP/K_{r,T})$

SOH Unreacted surface site occupied by a hydroxyl group

SOH·M Used in the non-electrostatic adsorption models for an adsorption site occupied by

component M or surface-bound metal

SO·M Used in the electrostatic adsorption models for an adsorption site occupied by

component M or surface-bound metal

T Absolute temperature, usually in Kelvin unless otherwise specified

 T_a Total surface charge for plane o

t Time

 t_{max} End of the break-through curve during a column experiment t_{min} Beginning of the break-through curve during a column experiment

t_{pulse} Mean residence time of a solute during a column experiment for a pulse release

Total advective travel time of the contaminant

t_{ss} Mean residence time of a solute during a column experiment for a steady-state

release

t_{step} Mean residence time for a step input/release

TDS Total dissolved solids

 V_{source} Volume associated with the contaminated source

V_w Volume of water (or adsorbate solution)

v* Contaminant velocity
v_c Contaminant velocity
v_d Darcy velocity

v_d Pore-water velocity

 X_{Gf} , Y_{Gf} , Z_{Gf} Green's functions (which are orthogonal) in the x, y, and z directions, respectively

x Distance in the x direction y Off-centerline distance

Z Valence statez Charge of ion{ } Activity

[] Concentration